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SUMMARY 
The integral equation encountered by Van de Vooren and Veldman in a problem of viscous flow was recently 
solved by Brown by use of the Wiener-Hopf technique. In this note Brown's solution is re-derived by a different, 
function-theoretic method. 

1. Introduction 

In their analysis of the incompressible viscous flow near the leading edge of a flat plate Van 
de Vooren and Veldman [1] encountered the integral equation 

f ( x )  = (2/z) -1 fo m log Ix - t l f ( t )d t  + x -*~, (1) 

where the function f ( x )  is related to the slip velocity on the plate. An exact solution of the 
latter equation was recently presented by Brown [2], obtained by means of complex Fourier 
transforms and the Wiener-Hopf  technique. Here a minor difficulty arises as the Fourier 
transform of the kernel log Ix[ does not exist. Therefore Brown introduces a suitable 
convergence factor which, in fact, amounts to solving the related integral equation 

f ( x )  = (2r0 -x f o  log Ix - t l e - ' l x - ' l f ( t )d t  + x - + e  -"x 

for e > 0, and then taking the limit of the solution as e --* 0. 
In the present note the integral equation (1) is solved by a function-theoretic method due 

to Heins and MacCamy [3], though essentially going back to Carleman. By use of complex 
Laplace transforms the solution of (1) is reduced to a Hilbert problem for a sectionally 
analytic function. The latter problem is treated by the standard technique described in 
Muskhelishvili [4]. A closed-form result is obtained for La{f(x)}, the Laplace transform of 
f (x ) ,  and on inversion Brown's solution [2] for f ( x )  is precisely recovered. The asymptotic 
expansions o f f ( x )  for small and large x are obtainable directly from ~{f (x)} .  It is found 
that the expansions agree with those of Brown except for a minor error in the expansion 
coefficient C 2 [2, eq. (6.2b)]. 

Two final remarks are in order. In [1] it was shown that 

f ( x )  = O(x -½) as x --* O, f ( x )  = O(x -~ log x) as x --* oc. (2) 
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These results will serve as a priori estimates for f ( x )  in the present analysis. Furthermore, in 
the sequel all expressions log w and w ~ (w complex) are understood to denote principal 
values of the pertaining functions, uniquely determined by the restriction - 7r < arg w < zr. 
These principal values are analytic functions in the complex w-plane cut along the negative 
real axis. 

2. Solution by a function-theoretic method 

Following I-3], we introduce the function 

i f ;  F(z) = ~ -  log (t - z) f( t )dt  (3) 

where z is a complex variable. In view of (2), the following properties of F(z) are obvious: 
(i) F(z) is an analytic function in the complex z-plane cut along the positive real axis. 

° 
(ii) F(z) = ~ log t f ( t )dt  + O(z ½) as z --* 0, (4a) 

F(z) = 1 f ( t )d t  l o g ( - z )  + O(z -½ log z) as z ~ oc. (4b) 

(iii) Let F ± (x) denote the limits of F(z) as z ~ x + i0, then 

F±(x) = ~ /  loglt - x[f(t)dt T- ½ f( t)dt ,  x > O. (5) 

To establish (4a), notice that F'(z) is a Cauchy integral, hence, according to [4, § 29] we have 
F'(z) -- O(z -~) as z ~ 0. The result in (4b) is readily found from the behaviour of 

F ( z - l )  = [ l o g ( t - z ) - l o g t ] f ( t - 1 ) t - 2 d t  - f ( t - 1 ) t - 2d t  l o g ( - z )  

near z = 0. In fact, F(z) = O(z -~ log z) as z ~ o% since the integral in (4b) vanishes as found 
a posteriori in (32). 

By means of (5) the integral equation (1) can be reduced to a functional equation between 
F ± (x), viz., 

- F - ( x )  = - 2 x  ½ -  ½i I x [F+(t) + F-(t)]dt ,  x > O. (6) F+(x) 
do 

The latter equation is further reduced by Laplace transformation. To that purpose we 
introduce the complex Laplace transform 

f; el'8 
G(s) = e-  =/2 F(z) dz (7) 

where fl = - arg s. The factor ½ in the exponent has been inserted for later convenience. The 
following properties of G(s) are easily established: 
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(i) G(s) is an analytic function in the complex s-plane cut along the positive real axis. 

(ii) G(s)=.O(s-l logs)  as s~O,  G(s)=O(s -1) as s ~ o o .  (8) 

(iii) Let G ± (or) denote the limits of G(s) as s ~ a + i0, then 

= j l  ~° e-'X/EF~(x)dx, a > 0. (9) G+(a) 

By Laplace transformation as in (9), the equation (6) transforms into 

(a - i)G+(a) - (a + i)G-(a) = 2(2~z)½a -~, a > 0. (10) 

Thus we have arrived at a Hilbert problem for the sectionally analytic function G(s). This 
problem is now solved by the method of Muskhelishvili [-4, Chap. 10]. 

We first determine a fundamental solution X(s) of the corresponding homogeneous 
Hilbert problem. Taking logarithms we have 

log X+(a) - log X-(a)  = l o g - -  - 
a + i  
~ r - i  

- 2i arctan(a-1), a > 0, (11) 

and consequently, by Plemelj's formulae, 

1 (o~ arctan (t- 1) 
log X(s) -~- J o  t ~ s dt. (12) 

The latter integral, to be denoted by W(s), can be determined from 

W(s) = - ½ 1 o g ( - s )  + o(1) as s~O,  

1 1 ('~ dt 
W'(s)= 2s n J o  ( l + t 2 ) ( t - s )  

1 1 s 1 l o g ( - s )  + - - +  
2s 2 1 + s  2 z~ 1 + s  2 " 

(13) 

(14) 

Thus we find 

X(s) : ( - s ) -~(1  + s2)¼e -m*(s) (15) 

where m*(s) is defined by 

1 l o g ( - t )  
m*(s) = ] - - ~ . 1 o  1 +  t 2 dt. (16) 

To make the definition (16) unique, it is understood that the path of integration does not 
cross the branch cuts along the positive real axis and along the imaginary axis from - i oo to 
- i  and from i to i or. Then m*(s) is a single-valued analytic function in the cut s-plane. The 
same branch cuts along the imaginary axis appear in the definition of the principal value of 
(1 + $2) ¼. However, it can easily be verified that the product (1 + s2)¼e -ra*ts) is analytic at 
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s = _ i and cont inuous across the branch cuts s = iv with r < - 1 or z > 1. Therefore,  the 
functions (1 + sZ)~e -m*{~) and X(s) are analytic in the s-plane with a single branch cut along 
the positive real axis. We list some further properties of X(s) and m*(s): 

(i) X ( s ) ~ ( - s )  -~ as s ~ 0 ,  X ( s ) ~ l  as s ~ o o .  

(ii) As s ~ a -I- i0, a > 0, m*(s) and X(s) attain the limit values 

(17) 

m*(a +_ iO) = m(a) +_ i arctan a, (18) 

a + i  
X + ( a ) -  a~(1 + a2)~ e -m~), (19) 

where m(a) is the function introduced in [2, eq. (5.4)], viz., 

1 ~" log t 
m(cT) zC 1 + t 2 dr. (20) Jo 

We now return to the original Hilbert  problem (10). By setting G(s) = X(s)gS(s), we find 
that  the problem (10) reduces to 

• + (a) - ~ -  (a) = 2(2n) ½ 
era¢..) 

(1 + a2) ~ ' a > 0, (21) 

with the solution 

(2n) ½ era(0 dt 
gS(s) = | (22) 

m J o  ( l + t 2 )  ~ t - s "  

The present solution is unique because of the requirements implied by (8) and (17), on the 
behaviour  of g~(s) as s ~ 0 and s ~ oo. To  evaluate the Cauchy integral of (22) we consider 
the function 

em*{z) 

z(1 +z2)~(z - s )  
(23) 

which is analytic in the z-plane cut along the positive real axis and has a simple pole at z = s. 
Integrate this function a round the contour  formed by the circles Izl = & Izl = R,  and the line 
segments from 6 to R along the upper  and lower sides of the branch cut. Then by making 
6 ---} 0 and R --} oo, we obtain 

2hi 
era*is) f ~ 

S(1 + S2) ~} = 2his- 1 + [em.~t+io) _ em.,_io}] dt 
t(1 + t2)~}(t - s) 

f o  era(t) dt (24) 
= 2 n i s - l + 2 i  ( l + t 2 )  ~ t - s "  
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In this manner the final solution for G(s) is found to be 

G(s) = i(2g)½(-s)-~[1 - (1 + s2)'~e-"*(~)]. (25) 

By use of (5), (9), the Laplace transform off (x)  can be expressed in terms of G -+ (a), thus 
leading to 

= f o  e-~X/2f(x)dx = ½a[G+ (a) - G-(a)] ~{f(x)}  

e-re(a) 
= (2n)ia -½ - (2n) ~ a½(1 + a2)~, a > 0. (26) 

Inversion of the first term (2~){a -~ yields a contribution x -½ to f(x). Through replacement 
of a by s the final term in (26) is analytically continued into the complex s-plane cut along 
the negative real axis. Here the continued function re(s) is defined as in (20), by 

1 ?s log t 
m(s) - 7r do | ~ dt (27) 

where the path of integration does not cross the branch cuts along the negative real axis and 
along the imaginary axis from - i o o  to - i  and from i to i ~ .  Notice that the branch cuts 
along the imaginary axis vanish for the product (1 + s2)-le -mrs). Then the inverse of (26) is 
given by the Laplace inversion formula, viz., 

(2n)½ iff_~ e- re(s) e xs/2 
f(x) = x -~ 4hi io~ s½( 1 + s2) i ds. (28) 

In the latter integral the path of integration can be deformed into a loop consisting of the 
two sides of the branch cut along the negative real axis. Then by use of the limit values 

m ( -  o" _+ i0) = -re(a)  _ i arctan a, a > 0, (29) 

the solution for f(x) becomes 

f(x) = x -½ 1 f /  e "~) - (2~r)~ a½(1 "~ 0.2) ~ e-X~/2da, (30) 

in exact agreement with the result in [2, eq. (5.6)]. It does not seem possible to further 
evaluate the integral in (30). 

Asymptotic expansions of f(x) for small and large x may be derived directly from 
~{f(x)}  expanded for s ~ ~ and s --* 0, respectively, by Abelian asymptotics of the inverse 
Laplace transform; see e.g. Doetsch [5, Kap. 7, 8]. It is found that the expansions are 
identical to those presented in [2, Sec. 6, 7] except for an error in the coefficient C 2 [-2, eq. 
(6.2b)] which should be corrected by 

3 
C2 = 2 ~ -  1- - -  (log 2) 2 + 2(5 - ~/) log 2 - ~2 + ~ ,  + _~ + ~ 2 ] ,  (31) 
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where ,~ denotes Euler's constant. As a side-result we also have 

obtained from (26) by letting tr ~ 0. 
Finally we shall determine F(z), as introduced in (3), by inversion of G(s). From the 

definitions (16), (27), it easily follows that 

(33) 

Accordingly the solution (25) for G(s) can be rewritten as 

Both functions G(±)(s) are analytic in the complex s-plane cut along the negative real axis. In 
fact, G (±)(s) is the analytic continuation of G(s) across the positive real axis starting from the 
half-plane Im s ~ O. Now it can be shown that the inverse of the complex Laplace transform 
(7) is given by the formula 

(35) 

where fl = ½n - arg z, and (7(s) = G(s) when Re z < 0, while t~(s) = Gt~-)(s) when Re z > O, 

Im z ~ O. If Re z < 0 (Re z > 0) the path of integration can be deformed into a loop around 
the branch cut along the positive (negative) real axis. Thus we find, by use of the limit values 

(36a) 

R e z > O ,  I m z ~ O .  (36b) 

It is easily verified that the expressions (36a, b) yield the same value of F(z) when Re z = 0. It 
is remarked that the function ~b 1 appearing in [1, Sec. 4], is related to F(z) through 

(37) q~l().,/t) = A ImF((2 + i/.t) 2) 

with A = 0.755. 
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