Journal of Engineering Mathematics, Vol. 12, No. 3, July 1978 Sijthoff & Noordhoff International Publishers-Alphen aan den Rijn Printed in The Netherlands

Note on an integral equation of viscous flow theory

J. BOERSMA

Department of Mathematics, Technological University, Eindhoven, The Netherlands

(Received November 18, 1977)

SUMMARY

The integral equation encountered by Van de Vooren and Veldman in a problem of viscous flow was recently solved by Brown by use of the Wiener-Hopf technique. In this note Brown's solution is re-derived by a different, function-theoretic method.

1. Introduction

In their analysis of the incompressible viscous flow near the leading edge of a flat plate Van de Vooren and Veldman [1] encountered the integral equation

$$f(x) = (2\pi)^{-1} \int_0^\infty \log|x - t| f(t) dt + x^{-\frac{1}{4}},$$
(1)

where the function f(x) is related to the slip velocity on the plate. An exact solution of the latter equation was recently presented by Brown [2], obtained by means of complex Fourier transforms and the Wiener-Hopf technique. Here a minor difficulty arises as the Fourier transform of the kernel $\log |x|$ does not exist. Therefore Brown introduces a suitable convergence factor which, in fact, amounts to solving the related integral equation

$$f(x) = (2\pi)^{-1} \int_0^\infty \log |x - t| e^{-\varepsilon |x - t|} f(t) dt + x^{-\frac{1}{2}} e^{-\varepsilon x}$$

for $\varepsilon > 0$, and then taking the limit of the solution as $\varepsilon \to 0$.

In the present note the integral equation (1) is solved by a function-theoretic method due to Heins and MacCamy [3], though essentially going back to Carleman. By use of complex Laplace transforms the solution of (1) is reduced to a Hilbert problem for a sectionally analytic function. The latter problem is treated by the standard technique described in Muskhelishvili [4]. A closed-form result is obtained for $\mathscr{L}{f(x)}$, the Laplace transform of f(x), and on inversion Brown's solution [2] for f(x) is precisely recovered. The asymptotic expansions of f(x) for small and large x are obtainable directly from $\mathscr{L}{f(x)}$. It is found that the expansions agree with those of Brown except for a minor error in the expansion coefficient C_2 [2, eq. (6.2b)].

Two final remarks are in order. In [1] it was shown that

$$f(x) = O(x^{-\frac{1}{2}}) \text{ as } x \to 0, \quad f(x) = O(x^{-\frac{3}{2}} \log x) \text{ as } x \to \infty.$$
 (2)

These results will serve as a priori estimates for f(x) in the present analysis. Furthermore, in the sequel all expressions log w and w^{α} (w complex) are understood to denote principal values of the pertaining functions, uniquely determined by the restriction $-\pi < \arg w < \pi$. These principal values are analytic functions in the complex w-plane cut along the negative real axis.

2. Solution by a function-theoretic method

Following [3], we introduce the function

$$F(z) = \frac{1}{2\pi i} \int_0^\infty \log(t - z) f(t) dt$$
 (3)

where z is a complex variable. In view of (2), the following properties of F(z) are obvious: (i) F(z) is an analytic function in the complex z-plane cut along the positive real axis.

(ii)
$$F(z) = \frac{1}{2\pi i} \int_0^\infty \log t f(t) dt + O(z^{\frac{1}{2}}) \text{ as } z \to 0,$$
 (4a)

$$F(z) = \left[\frac{1}{2\pi i} \int_0^\infty f(t)dt\right] \log(-z) + O(z^{-\frac{1}{2}}\log z) \text{ as } z \to \infty.$$
(4b)

(iii) Let $F^{\pm}(x)$ denote the limits of F(z) as $z \to x \pm i0$, then

$$F^{\pm}(x) = \frac{1}{2\pi i} \int_0^\infty \log|t - x| f(t) dt \mp \frac{1}{2} \int_0^x f(t) dt, \quad x \ge 0.$$
 (5)

To establish (4a), notice that F'(z) is a Cauchy integral, hence, according to [4, § 29] we have $F'(z) = O(z^{-\frac{1}{2}})$ as $z \to 0$. The result in (4b) is readily found from the behaviour of

$$F(z^{-1}) = \frac{1}{2\pi i} \int_0^\infty \left[\log(t-z) - \log t \right] f(t^{-1}) t^{-2} dt - \left[\frac{1}{2\pi i} \int_0^\infty f(t^{-1}) t^{-2} dt \right] \log(-z)$$

near z = 0. In fact, $F(z) = O(z^{-\frac{1}{2}} \log z)$ as $z \to \infty$, since the integral in (4b) vanishes as found a posteriori in (32).

By means of (5) the integral equation (1) can be reduced to a functional equation between $F^{\pm}(x)$, viz.,

$$F^{+}(x) - F^{-}(x) = -2x^{\frac{1}{2}} - \frac{1}{2}i \int_{0}^{x} \left[F^{+}(t) + F^{-}(t)\right] dt, \quad x \ge 0.$$
(6)

The latter equation is further reduced by Laplace transformation. To that purpose we introduce the complex Laplace transform

$$G(s) = \int_0^{\infty e^{i\beta}} e^{-sz/2} F(z) dz$$
(7)

where $\beta = -\arg s$. The factor $\frac{1}{2}$ in the exponent has been inserted for later convenience. The following properties of G(s) are easily established:

Journal of Engineering Math., Vol. 12 (1978) 237-243

- (i) G(s) is an analytic function in the complex s-plane cut along the positive real axis.
- (ii) $G(s) = O(s^{-1} \log s) \text{ as } s \to 0, \quad G(s) = O(s^{-1}) \text{ as } s \to \infty.$ (8)
- (iii) Let $G^{\pm}(\sigma)$ denote the limits of G(s) as $s \to \sigma \pm i0$, then

$$G^{\pm}(\sigma) = \int_0^{\infty} e^{-\sigma x/2} F^{\mp}(x) dx, \quad \sigma > 0.$$
⁽⁹⁾

By Laplace transformation as in (9), the equation (6) transforms into

$$(\sigma - i)G^{+}(\sigma) - (\sigma + i)G^{-}(\sigma) = 2(2\pi)^{\frac{1}{2}}\sigma^{-\frac{1}{2}}, \quad \sigma > 0.$$
 (10)

Thus we have arrived at a Hilbert problem for the sectionally analytic function G(s). This problem is now solved by the method of Muskhelishvili [4, Chap. 10].

We first determine a fundamental solution X(s) of the corresponding homogeneous Hilbert problem. Taking logarithms we have

$$\log X^{+}(\sigma) - \log X^{-}(\sigma) = \log \frac{\sigma + i}{\sigma - i} = 2i \arctan(\sigma^{-1}), \quad \sigma > 0,$$
(11)

and consequently, by Plemelj's formulae,

$$\log X(s) = \frac{1}{\pi} \int_0^\infty \frac{\arctan(t^{-1})}{t-s} dt.$$
 (12)

The latter integral, to be denoted by W(s), can be determined from

$$W(s) = -\frac{1}{2}\log(-s) + o(1) \text{ as } s \to 0,$$
(13)

$$W'(s) = -\frac{1}{2s} - \frac{1}{\pi} \int_0^\infty \frac{dt}{(1+t^2)(t-s)} =$$

= $-\frac{1}{2s} + \frac{1}{2} \frac{s}{1+s^2} + \frac{1}{\pi} \frac{\log(-s)}{1+s^2}.$ (14)

Thus we find

$$X(s) = (-s)^{-\frac{1}{2}}(1+s^2)^{\frac{1}{2}}e^{-m^*(s)}$$
(15)

where $m^*(s)$ is defined by

$$m^*(s) = -\frac{1}{\pi} \int_0^s \frac{\log(-t)}{1+t^2} dt.$$
 (16)

To make the definition (16) unique, it is understood that the path of integration does not cross the branch cuts along the positive real axis and along the imaginary axis from $-i\infty$ to -i and from i to $i\infty$. Then $m^*(s)$ is a single-valued analytic function in the cut s-plane. The same branch cuts along the imaginary axis appear in the definition of the principal value of $(1 + s^2)^{\frac{1}{2}}$. However, it can easily be verified that the product $(1 + s^2)^{\frac{1}{2}}e^{-m^*(s)}$ is analytic at

 $s = \pm i$ and continuous across the branch cuts $s = i\tau$ with $\tau < -1$ or $\tau > 1$. Therefore, the functions $(1 + s^2)^{\frac{1}{2}} e^{-m^*(s)}$ and X(s) are analytic in the s-plane with a single branch cut along the positive real axis. We list some further properties of X(s) and $m^*(s)$:

(i)
$$X(s) \sim (-s)^{-\frac{1}{2}}$$
 as $s \to 0$, $X(s) \sim 1$ as $s \to \infty$. (17)

(ii) As $s \to \sigma \pm i0$, $\sigma > 0$, $m^*(s)$ and X(s) attain the limit values

$$m^*(\sigma \pm i0) = m(\sigma) \pm i \arctan \sigma, \tag{18}$$

$$X^{\pm}(\sigma) = \frac{\sigma \pm i}{\sigma^{\pm}(1+\sigma^2)^{\pm}} e^{-m(\sigma)},\tag{19}$$

where $m(\sigma)$ is the function introduced in [2, eq. (5.4)], viz.,

$$m(\sigma) = -\frac{1}{\pi} \int_0^{\sigma} \frac{\log t}{1+t^2} dt.$$
 (20)

We now return to the original Hilbert problem (10). By setting $G(s) = X(s)\Phi(s)$, we find that the problem (10) reduces to

$$\Phi^{+}(\sigma) - \Phi^{-}(\sigma) = 2(2\pi)^{\frac{1}{2}} \frac{e^{m(\sigma)}}{(1+\sigma^{2})^{\frac{3}{4}}}, \quad \sigma > 0,$$
(21)

with the solution

$$\Phi(s) = \frac{(2\pi)^{\frac{1}{2}}}{\pi i} \int_0^\infty \frac{\mathrm{e}^{m(t)}}{(1+t^2)^{\frac{3}{2}}} \frac{dt}{t-s}.$$
(22)

The present solution is unique because of the requirements implied by (8) and (17), on the behaviour of $\Phi(s)$ as $s \to 0$ and $s \to \infty$. To evaluate the Cauchy integral of (22) we consider the function

$$\frac{e^{m^{*}(z)}}{z(1+z^2)^{\frac{1}{2}}(z-s)}$$
(23)

which is analytic in the z-plane cut along the positive real axis and has a simple pole at z = s. Integrate this function around the contour formed by the circles $|z| = \delta$, |z| = R, and the line segments from δ to R along the upper and lower sides of the branch cut. Then by making $\delta \rightarrow 0$ and $R \rightarrow \infty$, we obtain

$$2\pi i \frac{e^{m^{*}(s)}}{s(1+s^{2})^{\frac{1}{2}}} = 2\pi i s^{-1} + \int_{0}^{\infty} \left[e^{m^{*}(t+i0)} - e^{m^{*}(t-i0)} \right] \frac{dt}{t(1+t^{2})^{\frac{1}{2}}(t-s)}$$
$$= 2\pi i s^{-1} + 2i \int_{0}^{\infty} \frac{e^{m(t)}}{(1+t^{2})^{\frac{1}{2}}} \frac{dt}{t-s}.$$
 (24)

Journal of Engineering Math., Vol. 12 (1978) 237-243

In this manner the final solution for G(s) is found to be

$$G(s) = i(2\pi)^{\frac{1}{2}}(-s)^{-\frac{3}{2}}[1 - (1 + s^2)^{\frac{1}{4}}e^{-m^*(s)}].$$
(25)

By use of (5), (9), the Laplace transform of f(x) can be expressed in terms of $G^{\pm}(\sigma)$, thus leading to

$$\mathscr{L}{f(x)} = \int_{0}^{\infty} e^{-\sigma x/2} f(x) dx = \frac{1}{2} \sigma [G^{+}(\sigma) - G^{-}(\sigma)]$$
$$= (2\pi)^{\frac{1}{2}} \sigma^{-\frac{1}{2}} - (2\pi)^{\frac{1}{2}} \frac{e^{-m(\sigma)}}{\sigma^{\frac{1}{2}} (1 + \sigma^{2})^{\frac{1}{4}}}, \quad \sigma > 0.$$
(26)

Inversion of the first term $(2\pi)^{\frac{1}{2}}\sigma^{-\frac{1}{2}}$ yields a contribution $x^{-\frac{1}{2}}$ to f(x). Through replacement of σ by s the final term in (26) is analytically continued into the complex s-plane cut along the negative real axis. Here the continued function m(s) is defined as in (20), by

$$m(s) = -\frac{1}{\pi} \int_{0}^{s} \frac{\log t}{1+t^{2}} dt$$
(27)

where the path of integration does not cross the branch cuts along the negative real axis and along the imaginary axis from $-i\infty$ to -i and from *i* to $i\infty$. Notice that the branch cuts along the imaginary axis vanish for the product $(1 + s^2)^{-\frac{1}{2}}e^{-m(s)}$. Then the inverse of (26) is given by the Laplace inversion formula, viz.,

$$f(x) = x^{-\frac{1}{2}} - \frac{(2\pi)^{\frac{1}{2}}}{4\pi i} \int_{-i\infty}^{i\infty} \frac{e^{-m(s)}}{s^{\frac{1}{2}}(1+s^2)^{\frac{1}{2}}} e^{xs/2} ds.$$
(28)

In the latter integral the path of integration can be deformed into a loop consisting of the two sides of the branch cut along the negative real axis. Then by use of the limit values

$$m(-\sigma \pm i0) = -m(\sigma) \pm i \arctan \sigma, \quad \sigma > 0,$$
(29)

the solution for f(x) becomes

$$f(x) = x^{-\frac{1}{2}} - \frac{1}{(2\pi)^{\frac{1}{2}}} \int_0^\infty \frac{e^{m(\sigma)}}{\sigma^{\frac{1}{2}} (1 + \sigma^2)^{\frac{1}{2}}} e^{-x\sigma/2} d\sigma,$$
(30)

in exact agreement with the result in [2, eq. (5.6)]. It does not seem possible to further evaluate the integral in (30).

Asymptotic expansions of f(x) for small and large x may be derived directly from $\mathscr{L}{f(x)}$ expanded for $s \to \infty$ and $s \to 0$, respectively, by Abelian asymptotics of the inverse Laplace transform; see e.g. Doetsch [5, Kap. 7, 8]. It is found that the expansions are identical to those presented in [2, Sec. 6, 7] except for an error in the coefficient C_2 [2, eq. (6.2b)] which should be corrected by

$$C_2 = \frac{3}{2\pi^2} \left[-(\log 2)^2 + 2(\frac{5}{3} - \gamma) \log 2 - \gamma^2 + \frac{10}{3}\gamma + \frac{5}{3} + \pi^2 \right],\tag{31}$$

where γ denotes Euler's constant. As a side-result we also have

$$\int_0^\infty f(x)dx = 0,$$
(32)

obtained from (26) by letting $\sigma \rightarrow 0$.

Finally we shall determine F(z), as introduced in (3), by inversion of G(s). From the definitions (16), (27), it easily follows that

$$m^*(s) = m(s) \pm i \arctan s, \quad Im s \ge 0.$$
 (33)

Accordingly the solution (25) for G(s) can be rewritten as

$$G(s) = G^{(\pm)}(s) = \pm (2\pi)^{\frac{1}{2}} s^{-\frac{1}{2}} \left[1 - \frac{1 \mp is}{(1+s^2)^{\frac{1}{2}}} e^{-m(s)} \right], \quad Im \ s \ge 0.$$
(34)

Both functions $G^{(\pm)}(s)$ are analytic in the complex s-plane cut along the negative real axis. In fact, $G^{(\pm)}(s)$ is the analytic continuation of G(s) across the positive real axis starting from the half-plane $Im s \ge 0$. Now it can be shown that the inverse of the complex Laplace transform (7) is given by the formula

$$F(z) = \frac{1}{4\pi i} \int_{-\infty e^{i\beta}}^{\infty e^{i\beta}} \tilde{G}(s) e^{zs/2} ds,$$
(35)

where $\beta = \frac{1}{2}\pi - \arg z$, and $\tilde{G}(s) = G(s)$ when Re z < 0, while $\tilde{G}(s) = G^{(\mp)}(s)$ when Re z > 0, $Im z \ge 0$. If Re z < 0 (Re z > 0) the path of integration can be deformed into a loop around the branch cut along the positive (negative) real axis. Thus we find, by use of the limit values (18), (29),

$$F(z) = \frac{i}{(2\pi)^{\frac{1}{2}}} \int_{0}^{\infty} \sigma^{-\frac{3}{2}} \left[1 - \frac{e^{-m(\sigma)}}{(1+\sigma^{2})^{\frac{1}{2}}} \right] e^{z\sigma/2} d\sigma, \quad Re \ z < 0,$$
(36a)
$$F(z) = \pm \frac{1}{(2\pi)^{\frac{1}{2}}} \int_{0}^{\infty} \sigma^{-\frac{3}{2}} \left[1 - \frac{1 \mp i\sigma}{(1+\sigma^{2})^{\frac{3}{2}}} e^{m(\sigma)} \right] e^{-z\sigma/2} d\sigma,$$
$$Re \ z > 0, \ Im \ z \ge 0.$$
(36b)

It is easily verified that the expressions (36a, b) yield the same value of F(z) when Re z = 0. It is remarked that the function ϕ_1 appearing in [1, Sec. 4], is related to F(z) through

$$\phi_1(\lambda,\mu) = A \operatorname{Im} F((\lambda+i\mu)^2) \tag{37}$$

with A = 0.755.

REFERENCES

[1] A. I. van de Vooren and A. E. P. Veldman, Incompressible viscous flow near the leading edge of a flat plate admitting slip, J. Engg. Math., 9 (1975) 235-249.

Journal of Engineering Math., Vol. 12 (1978) 237-243

- [2] S. N. Brown, On an integral equation of viscous flow theory, J. Engg. Math., 11 (1977) 219-226.
- [3] A. E. Heins and R. C. MacCamy, A function-theoretic solution of certain integral equations (II), Quart. J. Math. Oxford Ser., (2) 10 (1959) 280-293.
- [4] N. I. Muskhelishvili, Singular integral equations, Noordhoff, Groningen (1953).
- [5] G. Doetsch, Handbuch der Laplace-Transformation, Band II, Birkhäuser Verlag, Basel (1955).